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Field Method for Estimating Soil Parameters 
for Nonlinear Dynamic Analysis of Single 
Piles 
 
A. Anandarajah1,  J. Zhang2 and C. Ealy3 
 
 

Use of in situ soil properties increases the reliability and accuracy of numerical 
predictions. The problem of interest here is the nonlinear dynamic behavior of 
pile foundations. It is shown in this paper that soil parameters needed for 
simplified dynamic analysis of a single pile may be back-calculated from the 
dynamic response of the pile measured in the field. A pile was excited by 
applying a large horizontal dynamic force at the pile-head level, and the 
response measured. In this paper, two different (simplified) methods of 
modeling the dynamic response of the pile are considered. One of the methods 
is based on the Winkler foundation approach, with the spring constant 
characterized by the so-called nonlinear p-y springs. The second method is 
based on the equivalent linear finite element approach, with the nonlinearity of 
shear modulus and damping accounted for by employing the so-called 
degradation relationships. In the latter, the effect of interface nonlinearity is 
also considered. Starting with best estimates of soil parameters, the 
experimental data on the response of pile is used to fine-tune the values of the 
parameters, and thereby, to estimate parameters that are representative of in 
situ soil conditions. The soil parameters calibrated by the method can be 
applied to earthquake problems when the pore pressure build-up due to free-
field response is not very high. 

 
 
KEYWORDS piles, dynamics, soil, soil-pile system, soil-structure interaction, finite 
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INTRODUCTION 
 
The behavior of a deep foundation depends on a set of complex factors such as the 
nonlinear constitutive behavior of soils including the effect of pore water pressure, soil-
pile-superstructure interaction including slip and separation at the pile-soil interface, 
characteristics of the loading, superstructure compliance, etc. When the amplitude of 
loading is large, most of these factors control the behavior. Accuracy and reliability of the 
predicted behavior depend not only on the analysis method employed, but also on the 
accuracy with which the model parameters (or soil properties) are determined. In cases 
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where good quality undisturbed samples can be obtained, most of the required properties 
can be determined by testing them in a laboratory. Due to unavoidable sample 
disturbance during sampling, transportation, and preparation during testing, in situ 
methods are preferred over laboratory methods. However, heterogeneity of natural soil 
deposits and approximations implied in analysis methods cannot be compensated by any 
of the above measures. This is, in fact, the reason that the static capacity of piles are in 
most cases determined directly from pile load tests performed in the in situ soil. A similar 
approach is highly desirable in the design of piles subjected to dynamics loads. It is 
shown that parameters for simplified analysis methods such as the Winkler foundation 
method and the equivalent linear finite element method may be determined from 
measured response of the pile subjected to a large-amplitude dynamic load applied at the 
level of the pile head. Experiments were conducted in a uniform granular soil deposit, 
filled in a test pit available at the test site, Turner-Fairbank Highway Research center 
(TFHRC), Federal Highway Administration, McLean, Virginia. 
 

 
    Fig. 1. A Photograph of the Field Test Setup 
 

EXPERIMENTS 
 
The tests were conducted in a 20 feet deep (6.1m) pit with a plan area of 

8′1×8′1 (5.5m×5.5m). The pit was filled with a uniform sand in loose to medium dense 
state about an year prior to the time the tests were conducted (for a different purpose). 
During this time period, the sand was subjected to rain several times. At the time the tests 
were conducted, the water table was below the level of the pile tip. The sand within the 
depth of the pile was damp due to capillary action.  
 
A 4-in (0.1m) diameter, 12.3-feet (3.75m) long, pipe pile was driven into the soil to a 
depth of 9.2 feet (2.8m), with an overhang of 3.1 feet (0.95m). A weight of 122 lbs (0.54 
kN) was attached to the pile at the pile head. The loading was to be applied by the 
Statnamic device (Middendorp, et al., 1992).  The Statnamic device produces a single-
pulse, impact loading. In order to extract more cycles of vibrations from a single-pulse 



 3

impact loading, a spring-mass oscillator was attached to the pile head, and the Statnamic 
load was applied in the horizontal direction to the pile at the pile-head level through this 
spring-mass oscillator. The test setup is shown in Fig. 1. As a shot is fired from the 
Statnamic device, the projectile latches onto the spring (which is attached to the pile 
head), and oscillates along with the pile head. Three tests were conducted, each time with 

a spring of different spring constant. 
 
 
Fig. 2. Comparison Normalized Ground-Level Displacement Versus Time Histories of 
the Pile From the Three Tests. 
 
The load experienced by the pile head was measured directly by a load cell attached 
between the pile head and the excitation setup. The horizontal displacement response of 
the pile was measured using 2 LVDTs (Linear Variable Displacement Transformers), one 
attached at the pile-head level and the other at the ground level. In addition, the 
horizontal pile-head acceleration was measured with the aid of an accelerometer. Fig. 2 
presents a comparison of the ground-level horizontal displacement-time histories of the 
pile from the three tests. The peak displacements from the 3 tests were 0.8in, 1.5in, and 
0.9in (2.0cm, 3.8cm, and 2.3cm) respectively. Except for the differences in the 
amplitudes, the frequency responses are almost the same. Only the results of the first test 
(Test 1, which has a peak amplitude of 0.8in) are used in the subsequent discussions and 
analyses. The load-time history is presented below along with numerical results. 
 

ANALYSES BY THE FINITE ELEMENT METHOD 
 
Details of the Method 
 
The analyses presented in this paper are performed using HOPDYNE (Anandarajah, 
1990), which is a finite element computer program with capabilities to model soil (linear 
and nonlinear), foundations, superstructure (linear) and soil-structure problems. The 
primary features of HOPDYNE that are used in the present study are 
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• 8-noded solid isoparametric element to model the soil 
• 2-noded beam bending element to model the pile 
• 4-noded three-dimensional slip elements to model the soil-pile interface 
• Equivalent-linear approach to account for the nonlinearity of the soil 

 
Details of these features can be found in published literature, and will not be repeated 
here.  
 
The soil properties needed for equivalent linear finite element analysis are (for each soil 
type): maxG , minβ , G  versus effγ  relation and β  versus effγ  relation. The pile is 
characterized in terms of xxI , yyI , zzJ , pA , E  and ν , where xxI , yyI  and zzJ  are the 
second moment of inertias about −x , −y  and −z axes respectively (with the pile axis 
taken along the −z axis), pA  is the cross sectional area of the pile,  E  is the Young’s 
modulus and ν  is the Poisson’s ratio. In addition, mass densities of the soil and pile are 
also required. While the properties of the pile are known and fixed, the properties of the 
soil are to be back calculated. To initiate the iterative process, starting estimates are 
required. The empirical equation suggested by Seed and Idriss (1970) is used to obtain a 
starting estimate for maxĜ : 

  21= /
max

ˆ
mKG σ          (1) 

where K  is a density-dependent constant, and mσ  is the mean normal pressure. As the 
value of the coefficient of earth pressure at rest is unknown, it is assumed to be 1.0. With 
this assumption, mσ  becomes equal to the vertical effective stress. For a loose sand, with  

mσ  expressed in lb/ft2 (or psf), 00040= ,K . The density of the sand was about 110 lb/ft3 
(17.3 kN/m3). As the soil is homogeneous, and the water table is not within the depth of 
the pile, Eq. 1 becomes: 
 

21621 10×420=11000040= //
max .)(,ˆ hhG   psf     (2) 

 
where h  is the soil depth. The optimal value of maxG  is then taken as 

maxmax ĜFG 1=         (3) 
where 1F  is a multiplier, to be established iteratively by matching the experimental 
response to the theoretical response. 
 
The value of minβ  was found to have a negligible influence on the overall response. On 
this basis, a value of 0.005% is assumed in the analyses reported here.  
 
The G  versus effγ  relation and β  versus effγ  relation are function of the soil types. As 
the soil type is known, the empirical relations proposed for this soil type (sand) by Seed 
and Idriss (1970) are used, and assumed to be fixed. Thus, the only parameter that is 
sought by the back-calculation process is 1F . 
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           Fig. 3. Deformation of a Portion of the Domain Analyzed 
 
Analysis and Results 
 
The problem of interest is complex and three-dimensional. Three-dimensional finite 
element analyses can be computationally intensive, even in the case of a total stress based 
equivalent linear analysis such as the one of interest here. Equivalent linear analyses 
amount to a few (3 to 10) linear analyses. When pore water pressure effects are to be 
considered (which is the natural extension of total stress analyses), the computational 
efforts can be overwhelming to the point where the analyses can no longer be performed 
within a few minutes on a PC. Thus, from the point of view of using the analyses for 
practical design purposes, it is of interest to explore approximations that may yield results 
with acceptable accuracy.  
 
 

                                   
                         Fig. 4. Plain-Strain Approximation of Gazetas and Dobry (1984) 
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First, we consider a regular mesh with no approximations. As the problem is symmetric 
about the vertical plane that contains the pile and the direction of applied loading, only 
half the domain needs to be discretized.  This cylindrical mesh, which contains 2824 
nodes, 2240 soil elements, and 18 bending elements, provides accurate results for the 
problem. The outer boundary of the cylindrical domain is placed at a radius of 30 feet 
(9.15m). There are 14 layers of elements in the vertical direction. The deformation is 
pretty much confined to the region near the pile. To show the details a little better, 
deformation of the domain (at a given time) within a window around the pile is shown in 
Fig. 3. 
 
Then two specific approximations are considered. In the past, several approximations 
have been developed for obtaining analytical solutions in the frequency domain (e.g., 
Gazetas and Dobry, 1984) and for approximate finite element solutions (e.g., Wu and 
Finn, 1997). We will use some of these as guidelines for our finite element analyses. In 
particular, Gazetas and Dobry (1984) developed models based on plain-strain 
approximations. In this, a slab of soil, extending to infinity in the radial direction, is 
assumed to have no displacements in the direction normal to the plane of the slab. At the 
center of the slab is a square-shaped pile segment undergoing a horizontal dynamic 
motion. The slab is divided into four quarters. As shown in Fig. 4, the energy that radiates 
away from the pile into the soil is assumed to take place in two distinct ways: (1) in the 
form of a compressional wave through two of the quarters, and (2) in the form of a shear 
wave through the other two quarters. It was shown that the radiation damping calculated 
from this approximate plane-strain model closely matched that radiation damping 
calculated from the plane strain solution of Novak, et al. (1978). The 14 plain-strain 
slabs, each with 4 quarters, are attached to the pile. In the radial direction, the slabs are 
fixed at 30 feet (0.915m) from the center. The slabs are not bonded in the vertical 
direction; i.e., each slab can undergo horizontal motions independently of each other.  

                    
             Fig. 5. Deformed Configuration Using Approximate, Coupled Mesh 
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The effect of bonding the plain-strain slabs in the vertical direction is examined using the 
mesh shown in Fig. 5, where, owing to symmetry, only half the domain is discretized. 
Primary difference between the coupled and uncoupled meshes are that the horizontal 
slabs are not bonded (i.e., uncoupled) to each other in  the uncoupled mesh whereas they 
are in the coupled mesh. To further cut down the number of degrees of freedom, the 
vertical degree of freedom was suppressed in all of the analyses presented; its effect is 
examined next. 
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         Fig. 6. Effect of Radial Domain Size and Vertical Degree of freedom 
 
Fig. 6 presents a comparison of ground-level displacement-time histories obtained with 
the full mesh under the following conditions: (1)  0′3=0X and 0=zu , (2)  5′1=0X and 

0=zu  and (3)  5′1=0X and 0≠zu , where 0X  is the radial distance at which a fixed 
vertical outer boundary is placed, and  zu ’s are the vertical degrees of freedom. It is seen 
that the differences in the results are very slight, indicating that the vertical response of 
the soil and the pile is negligible in the present case, and the radial distance of 30 feet is 
far enough to place a fixed vertical boundary.  
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 Fig. 7. Comparison of Results From Full, Uncoupled Plain-Strain and Coupled Meshes 
 
Fig. 7 presents a comparison of ground-level displacement-time histories obtained with 
the three different meshes described earlier: (1) the full mesh, (2) the plain-strain mesh, 
and (3) the coupled mesh. While the results are not equal to each other, the approximate 
models appear to give acceptable results for practical use. 
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   Fig. 8. Comparison of Calculated (Using Full Mesh and max. G150 ) and Measured Results  
 
It should be noted that these are not general results, and the outcome might differ from 
problem to problem, depending on the frequency of loading, natural frequencies of the 
system, etc. However, the results do indicate that for a given problem, it is worth 
exploring these approximations so that subsequent analyses (e.g., parametric study or a 
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more systematic probabilistic study, where the analyses need to be repeated several 
times) may be performed using one of these approximate models. 
 
After a few trial runs, a reasonably good match is found for 150=1 .F . A comparison 
between the finite element results (using the full mesh) with 150=1 .F  (Eq. 3) and the 
experimental results are shown in Fig. 8. The first plot in Fig. 8 presents the measured 
pile-head load versus time history, which is used as input to the finite element analysis. 
The 2nd and 3rd plots present the measured and calculated pile-head acceleration time 
histories respectively. The 4th plot presents a comparison between the measured and 
calculated ground-level displacement time histories. All of the above quantities are 
horizontal components.  
 
In view of the fact that the soil is actually an elasto-plastic material, whereas it is 
represented by a form of a nonlinear viscoelastic model in the finite element analysis, the 
quantitative comparison shown in Fig. 8 is considered to be reasonably good. In both 
cases, the response dies out in about 3 cycles. The rate of decay of the displacement 
amplitude is predicted reasonably well.  
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Fig. 9. Comparison of Calculated Responses with and without Slip Elements and 

max. G150  
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Fig. 10. Comparison of Calculated Responses with and without Slip Elements and 

max. G200  
 
In the analyses described so far, the soil has been bonded to the pile, preventing any 
gapping or slipping to take place at the soil-pile interface. Using the 560-element coupled 
mesh (Fig. 5), an analysis is conducted with slip elements placed between the pile 



 10

elements and the soil elements. The calculated ground-level displacement time histories 
with and without the slip elements are shown in Fig. 9. It is noted that the use of slip 
elements renders the response softer, yielding larger pile displacements. These results 
were obtained with 150=1 .F . Then 1F  is varied until a good match is obtained. The 
numerical results with 200=1 .F  and with slip elements are compared in Fig. 10 with 
numerical results using 150=1 .F  and without slip elements. The results from the both 
analyses are virtually identical, indicating that the soil stiffness doesn’t need to be 
reduced as much when slip elements are employed, since the use of slip elements makes 
the system softer by allowing slip and separation at the pile-soil interface. It should be 
noted that the consequence of allowing slip and separation may be more dramatic in other 
problems, and thus having the capability to use slip elements is desirable. 
 
 

WINKER FOUNDATION METHOD 
 
Details of the Method 
 

                                             
Fig. 11. Winkler Foundation Approach: Springs and Dashpots to  Represent the Effect of 
Soil 
 
In the Winkler foundation approach (Fig. 11), the primary member analyzed is the pile. 
The influence of the surrounding soil on the pile is introduced through a series of 
nonlinear springs (in the case of static problems). The most widely used spring force-
displacement relationships are the so-called p-y curves of Matlock (1970) for clays and 
Reese, et al. (1974) for sands. In extending this static method to problems involving 
dynamic loads such as that from earthquakes, ship collisions, etc., methods are needed for 
accounting for damping – both material and radiation damping. Several researchers have 
worked on this problem (Kagawa, 1980; Berger, et al., 1977; Wang, et al., 1998; 
Boulanger at al., 1997; Loch et al., 1998; Badoni and Makris, 1996; Abghari and Chai, 
1995, Nogami , et. al., 1992, Gazetas and Dobry, 1984, Sen et al., 1985; Trochanis, et al., 
1991). These studies indicated that there are some major difficulties to be resolved. 
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Firstly, the most appropriate spring/dashpot model to use is not clear. For instance, 
Wang, et al. (1998), after comparing results with series (spring and dashpot in series) and 
parallel (spring and dashpot in parallel) models, determined that the parallel model leads 
to a very stiff system, with the damping force over-dominating the system response. In 
either case, the material damping needs to be considered as well. The appropriate model 
to use is thus yet to be identified.  
 
Secondly, the issue concerning a suitable value to use for the coefficient of damping has 
not been resolved. For instance, if one uses Berger’s model (1977) to represent the 
radiation damping, where it is assumed that radiation of energy away from the pile takes 
place in the form of p- and s-waves through a volume of soil of constant cross section 
(like a one-dimensional rod), the damping coefficient becomes frequency independent, 
and is given by  
 

dVVCCC spsp ρ)( +=+=        (4) 
 
where pV   is the p -wave velocity and sV    is the shear (s-) wave velocity, ρ is the mass 
density and d is the diameter of the pile. Here C is the coefficient of damping per unit 
length of the pile. Wang et al. (1998) found that the value of C calculated using the above 
equation was too large. They arbitrarily assumed dVC s ρ2= . There is no consensus 
among researchers as to the most suitable model and the most appropriate equation for 
computing C. Berger’s model is approximate. The manner in which the energy radiates 
away from the pile is complex, and the p- and s-wave portions cannot be easily separated 
out as is done in Berger’s model. The cross section of the portion of the soil that carries 
the radiation energy is not constant. But analyses with non-uniform cross sections lead to 
frequency-dependent damping parameters (e.g., Gazetas and Dobry, 1984), making it 
difficult to apply them in a time-domain analysis. A frequency has to be arbitrarily 
selected for computing a value for C to use in a time-domain analysis such as that 
involved in the beam of nonlinear Winkler foundation method (BNWF). When the pile is 
shaken with a large amplitude loading – the problem of interest here - the material 
damping is more important than the radiation damping (Brown and O’Neill, 2001), and 
there is no rational method of calculating a value for the damping coefficient. 
 
There are yet other factors that cannot be properly accounted for at the present time. For 
instance, the softening that takes place at the soil/pile interface due to slipping and 
gapping is difficult to model. Also, the pore water pressure build up during a cyclic 
loading such as the earthquake loading cannot be accurately modeled. All of the above 
difficulties associated with the use of nonlinear Winkler foundation methods point to the 
need for a site-specific, field calibration of the method.  
 
In the specific Winkler foundation model used here, the soil is replaced by a series of 
elements involving a spring and a dashpot in parallel (i.e., without a second series 
dashpot shown in Fig. 11). The coefficient of damping is calculated according to Eq. 4, 
but with a modifier cF , as follows: 

dVVFCCFC spcspc ρ)()( +=+=       (5) 
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Estimated values of pV  and sV  are 738 ft/s (225 m/s) and 492 ft/s (150 m/s), and the 
mass density is 3.42 lb-sec2/ft4 (1.76 kN-sec2/m4 or 1.76 g/cm3). 
                           
The spring constant is represented by the p-y relation suggested by Reese, et al. (1974) 
for sands. Parameters of the p-y relation depend on whether the loading is static or cyclic; 
here the cyclic parameters are used. The entire curve is a function of ),( 1kd,′,γφ , where 
φ  is the friction angle of the soil, γ ′ is the effective density of the soil, d is the diameter 
of the pile, and 1k is the slope of the initial straight line. The value recommended for 1k  
for loose to medium dense sand is 60 lb/in3 (16225 kN/m3). Except for d , all other 
parameters can assume different values than our initial estimates. Let us, therefore, 
introduce multipliers with each parameter as: 
 

*φφ φF=         (6a) 

*γγ γ ′=′ F         (6b) 
*
11 = kFk k         (6c) 

 
The estimated value of the friction angle for this soil is 350, and the density is 110 lb/ft3 
(17.3 kN/m3).  
 
Analysis and Results 
 
HOPDYNE (1990) has the capability to consider nonlinear, discrete springs and dampers. 
The beam bending elements available in HOPDYNE is used to model the pile.  
 
The soil deposit is divided into 14 layers, and a parallel spring/dashpot elements is 
attached to the pile in the middle of each of these 14 layers. After several trials with 
different values for γφ FFFc   ,, and kF , it is found that most matching results are obtained 
with  1=50=1= γφ FFFc   ,., and 1=kF . In other words, changing only the value of φ not 
only is adequate, but gives the most optimal results. It may, however, be necessary to 
change some of the other parameters for best results in other problems. 
 
The comparison between numerical and experimental results is presented in Fig. 12, 
where the plots at the top and middle are the measured and calculated pile-head 
horizontal acceleration-time histories, and the plot at the bottom is a comparison between 
numerical and experimental ground-level horizontal displacement-time histories. It is 
seen that the comparison is as good as the one with the finite element results (Fig. 8), 
indicating that both the equivalent linear finite element method and the beam of nonlinear 
Winkler foundation method are equally capable of representing the dynamic response of 
the single pile under study here. 
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Fig. 12. Comparison Between Calculated (by BNWF Method with 5.0=φF ) and 
Measured Results 
 

CONCLUSIONS 
 
A series of large amplitude dynamic tests was conducted on a single pile driven into a 
homogeneous sandy deposit. The pile was subjected to a horizontal impact load with the 
aid of a Statnamic device. The pile underwent a cyclic motion involving about 3 cycles. 
The pile-soil system was modeled using two different numerical methods: (1) Equivalent 
linear finite element method, and (2) beam of nonlinear Winkler foundation method with 
nonlinear p-y curves to represent the stiffness and Berger’s model to represent the 
damping. The objective was to back-calculate from the experimental results site-specific 
soil properties. The study indicates that both numerical methods are equally capable of 
representing the nonlinear dynamic response of the pile-soil system, and that the relevant 
soil parameters for these methods may indeed be back-calculated from the experimental 
data. While the beam of nonlinear Winkler foundation is simpler and computationally 
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more efficient than the finite element method, the latter has the advantage of having the 
capacity to consider the interface slip and separation, and the effect of pore pressure (not 
considered in the present study). 
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